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Abstract

We present a thorough sensitivity analysis of a computable general equilibrium model to both data and
parameter errors. By examining model forecasts, we assess the impact of uncertainty in the parameters
at the static core of the model and in the data set used to calibrate the model to a fixed base year. We
also examine the behavior of the model due to the propagation of these uncertainties.

1 Introduction

The integrated assessment modeling (IAM) community seeks to explore complex interdisciplinary problems
by synthesizing knowledge from a variety of areas into one framework. In assessing the economic dimensions
of climate change, IAM researchers typically couple an economic model which forecasts energy demand, with
a climate model which forecasts temperature increases due to a changing carbon cycle and anthropogenic
forcing [4,5,7–9,22,24,25]. However, a major challenge in developing an IAM framework with which policy-
driven scenarios can be soundly examined is addressing and incorporating uncertainty. Computable general
equilibrium (CGE) models have long been used to model the economy in IAMs and consist of equations that
incorporate many parameters estimated from historical economic data. The two classes of such parameters
in a typical static CGE model that based on nested constant elasticity of substitution (CES) type production
and utility functions are elasticity of substitution and share parameters. As uncertainty is often overlooked,
the sensitivity of CGE models to various parameter specifications is poorly understood. Furthermore, failure
to incorporate uncertainty into an IAM framework could lead to misleading or erroneous conclusions.

Previous studies of parameter uncertainty have been limited to assessing a small subset of the relevant
parameters or to CGE models of a single country’s economy. For example, Webster et al. [26] and Hertel
et al. [15] explored forecast sensitivity to variations in subsets of relevant elasticities, primarily those of
substitution between capital and labor in the production functions. A study of calibration data uncertainty
in the context of CGE models has never been undertaken, likely due to the prohibitively large sample
sizes required to study parameter spaces at the relevant dimensionality. Approaches taken to quantify
uncertainty include statistical sensitivity analysis [1, 14] and stochastic parameter control [17, 18]. In the
statistical approach, distributions, typically Gaussian or uniform, are defined around uncertain parameters
and the CGE is solved under random parameter draws from these distributions. Monte Carlo methods can be
conveniently applied to sample the uncertainty distributions of exogenous parameters, but require significant
computational power for large models. Stochastic parameter control factors in the temporal evolution of
uncertain parameters and their relationships by incorporating uncertainty through the estimated variance-
covariance matrices of the uncertain parameters.

In this paper, we report results from a study examining sensitivity to both parametric and calibration
data uncertainties in the static CGE model that forms the core of the multi-sector and multi-regional CIM-
EARTH model [13].
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In Section 2 we briefly review CGE models and CIM-EARTH. In Section 3, we detail the methodology
used for model simulations, as well as the parameter distributions and tools used to conduct the uncertainty
analysis. In Section 4.1 we report the results of ensemble simulations that we use to study the propagation
of uncorrelated noise in the expenditure values of the model calibration data. In Section 4.2 we report
on an ensemble simulation that we use to study the relative sensitivity of the model to uncertainties in
the substitution elasticities, the primary parametric determinants of the static model. This study includes
ensemble results for the full elasticity parameter space (71 parameters) and for one subset: the Armington
international trade elasticities.

2 Background: the CGE Model

The basic calibrated share CES production function [6] has the form
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where y
ȳ is the ratio between the output of the industry in question (or of an intermediate bundle or aggregator

function in a nest structure) at some time, and the base year value for this quantity from the calibration
data set; and xi

x̄i
are the ratios of the inputs for commodity i (capital, labor, coal, intermediate bundles) at

that time with their respective base year values. The elasticity parameter, σ, controls to what degree these
inputs can be substituted for one another as their relative prices change. At either extreme(σ=0 or σ=∞)
we obtain special cases of the production function. For σ=0, we obtain the Leontief production function
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implying that the inputs are perfectly complementary such that an increase in output requires

an increase in all inputs. For σ=∞ we obtain the linear production function, y
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, implying that

an increase in output minimally requires an increase in only one input. Another special case of the CES
function used extensively in economics is the Cobb-Douglas function (σ=1)
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With this normalization of the production and utility functions, the share parameters, θi, are just the ratio
of the base year industry expenditure on input i, ēi, with the value of the function output, r̄y: θi= ēi

r̄y
. The

share parameters are used to calibrate the model so that the output is consistent with data from a base year
or base period. The functions incorporating these share parameters are then nested to form representations
of the various industries and consumers in the model. The nested function structure is typically represented
by a graph; a basic production nest is shown in Figure 1.

EnergyMaterials LaborCapital

Output

Figure 1: Basic nest for production

Each node of the tree is a CES function with a unique elas-
ticity parameter that aggregates the inputs coming into it from
below. The highest level node then aggregates the two interme-
diate bundles into the total industry output.

In this study, we synthesized econometric estimates of elas-
ticity parameters from GTAP estimates [19], a recent estimate
of elasticities in US industry from a historical BEA dataset [3],
and reviews performed by the EPPA group [23, 26]. For ease
of comparison with previous studies, and because Cobb-Douglas
elasticities have long been used in studies of the substitutability
of capital and labor, we use distributions centered on a Cobb-

Douglas mean. The share parameters were calibrated exclusively with the GTAP version 7 database of global
expenditure values [11]. The nested structure of the production and utility functions in this study are loosely
based on that used by the EPPA group [2]. For more details, see the CIM-EARTH model documentation [13].

The static general equilibrium core is roughly the same as any other static CGE model [10,20,21], so the
sensitivity results reported herein should apply to CGE modeling in general. The model configuration with
which we work has moderate-scale spatial (16 regions), temporal (60 year horizon at one year time steps),
and sectoral (16 production sectors plus 16 importers per region) resolutions. Dynamics in the CIM-EARTH
prototype used in this work employ a recursive-myopic strategy in which most important drivers of economic



growth and development (e.g., labor productivity and supply, energy efficiency, resource availability) are
modeled with exogenous time trends roughly based on the dynamic equations of the EPPA model [2].

There are many ways to employ CGE models to forecast economic changes. For convenience, we restrict
our analysis to single year (the horizon year, 2064) and time-series (2004-64) forecasts of specific model
variables such as GDP and fossil fuel CO2 emissions. We do not address sensitivity for variables relevant
to comparison forecasts, ensemble simulations that test the differences between policy options (or sets of
‘policy parameters’ such as emissions prices or industry subsidies) or scenarios, which could have quite
different responses to uncertainty. We leave such issues for future studies.

The results obtained from solving CGE models are highly dependent upon the choices of values for the
elasticity and share parameters and thus on the data from which they are estimated. Because we have taken
substitution elasticities from exogenous econometric estimations, we henceforth refer to their uncertainty as
exogenous parametric uncertainty, or simply parameter uncertainty. This uncertainty is distinguished from
the uncertainty due to error in the GTAP data set used to calibrate the share parameters, which we refer to
as calibration data uncertainty.

3 Methodology

We performed two large sets of simulations to explore the sensitivity of model output to calibration data and
parametric uncertainty, respectively. In both cases, we performed Monte Carlo sampling over uncorrelated
Gaussian distributions. In the first set of 10,000 runs, we sample from the distributions of 16 expenditure
data values to explore the implications of uncorrelated Gaussian noise in the calibration data set, and 5,000
runs to explore parametric uncertainty in elasticities. To handle the large scale parallelization of the CGE
model, which enabled us to explore its parameter space, we developed a computational framework using the
Swift parallel scripting system [28].

3.1 Calibration data uncertainty

We calibrate CIM-EARTH to a base year (2004) using the GTAP version 7 database [11]. That is, we tune
the model share parameters so that the model gives results for 2004 that are consistent with this global
expenditure database, as described in Section 1. The full database has 113 regions (R), 57 sectors (S), 5 base
factors (F) and is summed to the R × S × F aggregate database that is required for a particular question.
A region can be anything from a single country to the whole globe, a sector can be as specific as raw milk
or iron and steel, or as general as agriculture and industry, and base factors are skilled and unskilled labor,
capital, land, and natural resources. For this study we use the 16 × 16 × 4 aggregate listed in Figure 1.
The total number of expenditure values in a particular R × S × F aggregation of the GTAP database is

16 regions 16 sectors (per region)
Oceania Agriculture and forestry
Southeast Asia Coal
Japan Oil
Rest of East Asia Natural gas
India Iron and Steel
Rest of South Asia Chemicals
Russia, Georgia & Asiastan Non-ferrous metals
Middle East & N. Africa Cement/Mineral products
Sub-Saharan Africa Other manufacturing
Western Europe Refined petroleum
Rest of Europe Electricity
Brazil Land transport
Mexico Air transport
Rest of Latin America Sea transport
USA Government services
Canada Other services

Table 1: Aggregate regions and sectors for the 16×16 model used here.

RS(2S+F ) producer demand expenditures, R2S importer demand expenditures and R(2S+1) consumer



demand expenditures (including consumer demand for savings). Thus, our selected aggregation reduces the
number of expenditure values from about 1.5 million in the full database to just over 14,000 values in the
aggregated database. Ideally, we would perturb the raw dataset before aggregation, but this capacity is
not yet available due to both technical data formatting and processing issues and, more importantly, to the
large number of expenditure values in the fully disaggregated database. About 15% of these 14,000 values
are ignored for being negligibly small (less than $100K) and another 8% are nearly so (less than $1M), yet
the parameter space is still large from the perspective of Monte Carlo uncertainty analysis. For this study,
we perturb the 1600 largest (relative to the total expenditure of the relevant industry or consumer), which
amounts to 3-5 values per sector (consumer and importer) per region. While we restricted the analysis to
this smaller sample size to make the ensemble simulations more tractable, the parameter space of perturbed
values still accounted for more than 75% of global expenditure. In Section 4.1 we address the feasibility of
studies on the complete aggregated database and the full disaggregated database.

We set the width of the Gaussian distributions about the mean expenditure values to one of three different
values representing our estimate of the reliability of economic data among various regions. Highly developed
countries – the United States, Canada, Western Europe, Japan, Australia and New Zealand (most of the
OECD countries) – are believed to have well established structures in place for consistent and accurate data
gathering. Therefore, we assume that noise in reported expenditure values from these countries is small and
set the standard deviation (s.d.) of each sampled distribution at 3% of the mean. In contrast, we assume
that poorly developed countries and countries notorious for having data inconsistencies – China, South Asia,
Asiastan (Central Asia), Sub-saharan Africa and much of Latin America – have a relatively large amount
of noise in reported expenditure values, modeled as parameter distributions with standard deviations of 7%
of the mean. All other regions – Mexico, Eastern Europe, Middle East/North Africa, South East Asia and
Russia – were modeled with expenditure data distributions having 5% standard deviations around their
means. The primary source of error in the GTAP database is likely reporting error, but there are other
possible issues that could lead to noise in the dataset. For example, of the 87 regions and countries that
were included in the GTAP 6 database (base year 2001), slightly less than half were updated with current
datasets in GTAP 7. The others are updated through a simple rescaling of the data to the new base year.
Unsurprisingly, the well established nature of data gathering agencies in OECD countries leads to more
frequent data updating and thus little need to rescale. However, most countries in the high-error and many
in the mid-error bracket defined for this study(including China, South Asia and most of Africa and Latin
America) were not updated with new datasets in GTAP 7. We recognize the characterization of data errors
is somewhat simplistic, but nevertheless believe it to represent a considerable improvement over current
practice, which ignores this error source.

-0.5 0.0 0.5 1.0 1.5

Figure 2: A comparison of parameter distributions
for σKL in agriculture and forestry. Blue dashed:
GTAP estimate with 20% s.d.; Yellow dotted: two
estimates from Balistreri et al. 2003 [3]; Red solid:
two distributions with Cobb-Douglas mean and
s.d. estimate from EPPA [23] and s.d.=0.20.

We do not address the possibility of correlated errors in
the calibration dataset. It is sometimes stated, for example,
that local political agencies in China have a strong incentive
to report higher numbers to inflate the successes of industry
in their region [16]. Establishing the existence and extent
of sources of correlated errors will require more detailed
studies of the underlying data structures of our models. We
leave both tasks for future studies.

3.2 Parameter uncertainty

We explore model sensitivity to parameter uncertainty in all
substitution elasticities (71 values), and in one key subset,
Armington trade elasticities (16 values), in order to explore
relative sensitivities and assign priorities for future param-
eter studies based on sensitivities. Previous studies of the
sensitivity of CGE model results to uncertainties in substi-
tution elasticity parameters [23,26] only included subsets of
substitution elasticity parameters, such as the elasticity in
each industry between labor and capital.

Given the sizable discrepancies that exist in the econo-
metrics literature between estimates of substitution elasticities, it is difficult to establish a consistent basis
for producing uncertainty distributions for these parameters. Instead of trying to combine disparate and
often contradictory estimates of means and standard errors, we chose to center the parameter distributions



at relatively standard values with standard deviations set to 20% of the mean. For ease of comparison
between this current study and other studies in the CGE literature, which predominantly use Cobb-Douglas
production functions to model substitution between labor and capital, we have chosen σKL, the elasticity of
substitution between capital and labor, to have mean one independent of region and sector. Figure 2 shows
an example of elasticity parameter distributions. Two of the five distributions shown correspond to a recent
study by Balistreri [3]: one for farms with mean 0.307 and a wide distribution, and another for agriculture,
forestry and fishing services with mean 0.364 and a much tighter confidence. Two other distributions cor-
respond to the input sample used in this study and the input sample described by Sokolov et al. [23], both
with Cobb-Douglas mean. The final distribution shown has a mean estimate from GTAP [19] with 20%
relative standard deviation. Figure 9 shows the capital-labor elasticity parameter for many other industries.
For Armington elasticities we use estimates produced by the GTAP group [19] and for intermediate nest
elasticities, we use values from the EPPA group [21], both with 20% standard deviations.

3.3 Computational studies

We performed two large sets of simulations to explore the sensitivity of model output to calibration data and
parametric uncertainty, respectively. In both cases, we performed Monte Carlo sampling over uncorrelated
Gaussian distributions. In the first set of 10,000 runs, we sample from distributions of over 1,600 expenditure
data values to explore the implications of uncorrelated Gaussian noise in the calibration data set. The
second large study contains 5,000 runs to explore parametric uncertainty in the full elasticity set and 1,000
runs to study the magnitude of the contribution from the Armington subset only. To handle the large
scale parallelization of the CGE model, which enabled us to explore its parameter space, we developed a
computational framework using the Swift parallel scripting system [27, 28]. All told, we employed roughly
30K CPU-hours (0.4-1.6 hours per run, depending on many factors) for the prototype ensemble studies,
spread over several batches of jobs on TeraGrid and Open Science Grid computers: Firefly (U. Nebraska,
OSG), QueenBee (Louisiana State University, TG), Ranger (Argonne National Lab, TG), TACC (U. Texas,
TG) and TeraPort (Computation Institute, OSG). Simultaneous processor usage peaked at about 2K in
these runs.

4 Results

We find stark contrasts in the relative sensitivity of different output variables of the CIM-EARTH model
to calibration data and elasticity parameter noise. We find substantial differences in output sensitivity
between variables in different regions and at different levels of aggregation, from which we construct a basic
classification of forecast variable sensitivities in order to begin to answer the question of what can and cannot
be learned from CGE modeling and estimate the ensemble sizes that are required to fully characterize the
many uncertainties. One basic conclusion is that the robustness to parametric and data uncertainty of a
model’s conclusions depends strongly on the particular model outputs upon which the conclusion relies. We
examine many regions and sectors as well as several levels of output variable aggregation:

1. Global aggregates: global GDP and global CO2 emissions (Figures 6 and 5),
2. Region aggregates: regional GDP (Figure 10), regional emissions (Figures 13) and regional industry

demands for electricity and refined petroleum products (Figures 14 and 15),
3. Sector specific aggregates: global industry production levels for steel and iron, chemicals, cement, and

non-ferrous metals aggregated over regions, global consumer and industrial demand for electricity and
refined petroleum products,

4. Region and sector specific revenue variables: regional industrial production levels for steel, chemical,
cement, etc. (Figures 11 and 12),

5. Micro variables: regional consumer demand for electricity and refined petroleum products (Figures 16
and 17).

As expected, we find that output variables at a higher aggregation level display less sensitivity to both
calibration data noise and elasticity parameter uncertainty. We collect most results in Tables 2 and 3.

4.1 Calibration data uncertainty

Table 2 gives the standard deviations of a selection of model output variables for a variety of regions and
aggregation levels in the base (2004) and forecast (2064) years. The relative difference provides a basic



measure of the strength of the model response to uncorrelated Gaussian noise in the calibration data. Not
surprisingly, larger scale variables (aggregations of a larger number of perturbed variables) such as global
GDP and emissions (vs. regional GDPs and emissions) are generally less sensitive to the calibration data
noise. Comparisons among different variables (between global GDP and global emissions for example) are
less obvious, though similar patterns are still apparent, especially in the forecast year. Variations between
the rate of change in s.d. among output variables are more mixed, but a primary determining factor appears
to be specific regional properties, with more developed countries generally having more stable responses to
the perturbations.

In order to explore the model response to calibration data noise we apply a basic metric of linear variable
response by measuring the correlation of selected variable’s base year and horizon year values. Figure 3
shows an example of this metric for the model output of Western Europe’s fossil fuel CO2 emissions. In
Table 2 we show this linearity metric for a wide range of model output variables and regions. Interestingly,
this linearity appears to be degraded in aggregation; that is, global aggregates of variables – such as GDP,
emissions and steel industry revenues – appear to have a significantly more nonlinear response to the input
perturbations. This result is in some contrast to the behavior of distribution widths at varying level of
aggregations, as described above.

Figure 3: Relationship between model
response (percent deviation from the
mean) in the base year (x-axis) and
horizon/forecast year (y-axis) for CO2

emissions in Western Europe. The lin-
ear fit (red line) is a first-order esti-
mate of the model’s response to per-
turbed inputs in the calibration data.
The linear correlation is presented in
Table 2. The rectangle is one s.d. from
the mean in each dimension.

The slope of the linear fit, s, (also reported in Table 2) provides a
first-order estimate of the model response to perturbation. This metric
describes how much growth of the distribution width can be assigned to
this linearity. For correlation c we then have the relationship between
the standard deviations σ(64)

σ(04)
=
s

c
.

The correlation is then interpreted naturally as the fraction of the
increase in the standard deviation (the relative ‘spread’ of the input
perturbation) that is due to this linear component.

It is tempting to assume that Gaussian noise can be characterized in
larger parameter spaces than are considered here, due to the near linear
response of many relevant model variables. For example, it may be
possible to roughly characterize a model’s response to calibration data
noise throughout a forecast trajectory without simulating the entire
model trajectory (perhaps even simply by solving the static base year
model). Though the linearity of the response is not as strong for large
scale aggregates such as global CO2 emissions (an important quantity
for obvious reasons), their relative sensitivity to the data noise is much
less overall, ameliorating this potential concern.

It is also tempting to assume that the linearity of the model’s re-
sponse to calibration data noise implies that this error will compound with other sources of uncertainty in
an approximately additive (as opposed to the usual multiplicative) way. If true, such a relationship would
greatly simplify attempts to include this effect consistently with other parametric uncertainties, since en-
sembles of calibration data noise could be studied independently and combined with other uncertainties and
since approximate characterizations of the response of a model (or class of models) to this noise could be
calculated offline and applied to many applications. More studies are needed on the composite effects of un-
certainty in different parameter sets (share/calibration parameters, elasticity parameters, dynamic equation
parameters, etc.) to validate this assumption. However, the findings here are certainly a positive indication.
Further, as a practical matter, we feel that the overwhelming challenge of doing true characterizations of
model response to uncertainty in the full space of calibration data for each study independently, compels an
approximate solution of this type.

Evaluating sensitivity to run set size. Next we construct a metric based on resampled distributions
from the full ensemble to explore the extent to which a smaller run-set would have sufficiently characterized
the uncertainty in each example model output variable explored here. Resampling techniques are used
frequently in modern data analysis to explore the extent to which statistical measurables of a data set can
be taken to be the correct values [12]. Briefly, the idea is to populate a new ‘resampled’ ensemble by pulling
(or resampling) subsets of a fixed size from the original ensemble and calculating the statistical measurable of
interest for the subset. The measurable from each resampled subset is then a single element in the resampled
ensemble. The mean and standard deviation of the resampled ensemble then gives some information about



Table 2: Standard deviations and linear response measures for select variables in the global aggregate and for regions
representative of the three data error classifications.

Variable Aggr. Standard dev.a Linearity measuresb

Region 2004 2064 Slope Correlation

GDP

Global 0.7% 0.8% 0.847 0.6944
W. EU 1.2% 1.8% 1.297 0.8486
Mexico 1.6% 2.5% 1.169 0.6827
China 2.0% 4.2% 1.387 0.6295
Global 0.7% 1.7% 1.300 0.5376
USA 1.4% 2.0% 1.223 0.8790

CO2 W. EU 1.5% 2.5% 1.464 0.8665
emissions Mexico 3.1% 4.1% 1.181 0.8813

Russia 2.3% 4.1% 1.363 0.7604
China 1.9% 3.7% 0.968 0.5079
Global 0.9% 2.1% 1.128 0.4968

Steel USA 1.8% 2.5% 1.207 0.8373
revenue Russia 1.6% 4.7% 1.851 0.6381

China 2.6% 3.5% 0.847 0.6221
Global 0.3% 1.5% 2.115 0.3624

Industrial USA 0.4% 1.3% 2.349 0.7915
electricity Mexico 1.1% 2.6% 1.476 0.6175
demand China 0.9% 3.4% 1.154 0.2991

Global 0.8% 2.2% 1.843 0.6750
Consumer USA 2.0% 3.4% 1.691 0.9774
electricity Russia 2.3% 4.3% 1.461 0.7821
demand China 3.4% 7.4% 1.507 0.6972

a relative standard deviation measured as % variation from mean
b linear correlation measure as in figure 3

additional forecast uncertainty due to the limited sample size. We perform resampling (with replacement)
on the mean and standard deviation measurements for each variable listed in Table 2 using resample sizes
(the size of the subset pulled from the original ensemble to calculate each measurable that populates the
resampled ensemble) varying from 500 to 10,000. We use these resampled ensembles for two distinct purposes:
to estimate the statistical uncertainty inherent in the forecast measurables with the sample sizes used in the
study in order to show that the sample sizes were indeed large enough to fully characterize the forecast
uncertainty resulting from the perturbations to the calibration data, and to estimate a minimum number of
performed runs that would have given a mean and standard deviation measurement for the variable within
an acceptable deviation from the result of the 10,000 runs, with high ('95%) confidence.

For example, Figure 4 shows plots of the standard deviation of the resampled ensemble of the mean
and s.d. of Chinese consumer demand for electricity (one of the most sensitive variables considered here).
The standard deviation of the resampled ensemble of the mean and of the standard deviation is about 0.1%
of the full sample mean and 1% of the full sample standard deviation (respectively) at a resample size of
about 5,000 runs. Thus, if we had only performed '5,000 runs instead of 10,000, we would have had a
'95% chance of measuring the same mean within ±0.2% of the full sample mean and the same standard
deviation within ±2%. Together these results imply that, using half as many runs, we could predict, with
95% confidence the standard deviations of Table 2 to within 2-8% of the stated measurement from the full
ensemble. This additional uncertainty is not substantial, though it is probably good to keep this additional
error source below 10% to ensure that the forecast impact of data calibration noise are not being washed
out by the statistical noise.

All other variables that we examined have the same or less additional statistical uncertainty when re-
stricted to half the runs, so we conclude that the full model output could indeed have been produced with
roughly half the runs. Indeed, if only large scale global aggregate variables such as global GDP and emissions
are required, even fewer runs could be performed to give a satisfactory confidence interval. Along with the
strong linearity in the model response to these perturbations, this result is further evidence that a character-
ization of the forecast sensitivity to uncorrelated noise in the full calibration data set can be accomplished



Figure 4: Bootstrap curves are used to determine the additional forecast uncertainty in statistical measurables caused
by sample sizes that are not infinite. Each plot is generated by performing an independent bootstrap resampling
measure with the resample size, the number of elements from the original ensemble that are resampled (with replace-
ment) repeatedly to calculate the statistical measure that is in question, varied from 500 to 10,000. They are also
used to estimate a minimum number of runs that can reproduce the statistical results of the full ensemble. Right:
the resampled statistical measurable is the mean of the Chinese consumer demand for electricity in 2064. Left: the
resampled statistical measurable is the standard deviation of the Chinese consumer demand for electricity in 2064.
Both plots show the standard deviation of the resampled distribution of this measurable.

with a reasonably sized ensemble. Further, cancellations between noisy components that occur in the many
levels of aggregation (in the aggregated expenditure values when we aggregate the calibration dataset from
113×57 to 16×16 and then in the aggregate of output variables from micro up to macro) means that it may
be quite possible to get a robust understanding of the impacts of this noise, even for the extremely large
parameter spaces described in Section 3.

4.2 Parameter uncertainty

Sensitivity of the model to perturbations in the elasticities is presented as relative variation from the mean
over time for many of the model outputs described previously. Table 3 gives the uncertainty in the forecast
year (2064) results for many variables at different levels of aggregation. Model response to uncertainty in
elasticity parameters is very different from the response to calibration data noise (share parameter uncer-
tainty). The calibration effectively tunes the static CGE in the base year to very near the ‘correct’ equilibrium
solution (the one that reproduces the data) so that very few substitutions are made (and thus the output
of the static model in the base year is very nearly independent of the elasticity parameters, modulo a few
interesting examples that we consider in more depth below). Further, since elasticity parameters are taken
to be the same across regions (industries are modeled the same way, independent of their locations), we do
not see the noise cancellation in global aggregates (relative to regional variables) that we did for calibration
data noise. However, the nonlinear response of model output variables to relative price fluctuations between
commodities and factors as time goes forward is highly dependent on this parameter set.

Figure 5 shows global gross emissions and relative sensitivity to perturbations in substitution elasticities.
The standard deviation of the global CO2 emissions forecast grows to about 20% of its mean by 2064.
Global GDP, on the other hand, (Fig. 6) can be forecast with substantially more confidence, with a standard
deviation due to elasticity uncertainty that grows to only about 2.5%.

This stark distinction illustrates dramatically how much long-term forecast confidence differs among
output variables. There are many reasons for the discrepancy in sensitivities to parameter noise between
GDP and CO2 emissions variables, primary among which are the facts that GDP is an aggregate of a larger
assortment of micro model variables and is dominated by significantly more stable economies (USA, Western
Europe, etc.) than those that dominate CO2 emissions (primarily China). Output variables tend to be
significantly less sensitive to uncertainty in substitution elasticities in these stable, high GDP economies,
primarily because relative price fluctuations in these economies are significantly less pronounced. (Recall
that elasticity parameters determine how easily industries and consumers can substitute between various
commodities and primary factors as relative prices change.)

In fact, it turns out that GDP and fossil fuel emissions are not correlated at all for highly developed
countries such as the United States and Western Europe, though for China and India (and other developing



Figure 5: (Left) Global emissions from fossil fuel consumption for 5000 model runs with perturbed substitution
elasticities, and (right) the relative sensitivity of global CO2 emissions.

Figure 6: (Left) Global GDP for 5000 model runs with perturbed substitution elasticities, and (Right) the relative
sensitivity of global GDP.

countries) there is a strong positive correlation between GDP and emissions (Figure 7).

Figure 7: Forecast year GDP vs. fossil CO2 emissions for world, the USA and China.

These differences probably account for most of the discrepancy in sensitivity between these two variables.
As can be seen from Table 3 and the figures in Appendix B, the forecast sensitivity for GDP (Figure 10) and
CO2 emissions (Figure 13) in various regions falls generally into the expected hierarchy of aggregation levels.
Figure 8 shows the model forecast for global and regional carbon intensity (fossil fuel CO2 emissions per unit
GDP) for the 5,000 runs in the ensemble. Regional carbon intensities have forecast year uncertainties largely
comparable to the uncertainty in emissions themselves (i.e., we find little correlation between the response
of GDP and emissions variables in nearly all regions).

4.3 The Armington subset

To begin to explore the major sources of this parametric sensitivity, we look at the model forecast response
to perturbations of the 16 Armington trade elasticities in the model. These parameters control the substi-
tutability of the domestic and imported versions of the 16 commodities (resp.). Parameters here are assumed
to be the same in every region and each parameter realization is constrained to satisfy the so-called ‘rule
of two’ [19], i.e. the elasticity between imports from various regions is set to twice the Armington elasticity
between domestic and imports. We leave explorations of differences between countries and violations of the
‘rule’ for future work.



Variable Aggr. Forecast year s.d.
Region Full set Arm. subset

GDP

Global 2.62% 0.57%
W. EU 4.46% 0.34%
Mexico 6.16% 0.55%
China 18.00% 2.25%
Global 12.73% 3.08%

Steel USA 7.70% 2.01%
revenue Russia 10.14% 1.26%

China 17.37% 5.38%
Global 18.07% 1.06%
USA 14.61% 0.56%

CO2 W. EU 16.06% 0.46%
emissions Mexico 16.41% 0.39%

Russia 24.10% 1.34%
China 24.32% 3.11%
Global 11.81% 1.54%

Industrial USA 4.35% 0.28%
electricity Mexico 11.71% 0.30%
demand China 19.11% 3.95%

Global 16.61% 1.06%
Consumer USA 8.66% 0.22%
electricity Russia 29.71% 1.20%
demand China 23.48% 3.17%

Table 3: Forecast year (2064) standard deviations resulting from uncertainty in model elasticity of substitution
parameters.

The results are collected in Table 3, and compared to the forecast year standard deviations from the full
parameter set. Not surprisingly, variables are most sensitive in regions and sectors where international trade
is essential. Variables in China show an especially substantial sensitivity to perturbations in Armington
parameters, relative to other regions. Sizable sensitivities are also exhibited by industry revenue variables
that have a sizable revenue component from global trade (as in the steel revenue variable from Table 3.
While these sensitivities appear relatively small compared to the model response to perturbations in the full
elasticity parameter set, it will be essential to account for this uncertainty in particular in a study of the
impacts of climate policy on international trade and carbon leakage.
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A Parameter distributions
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Figure 9: A comparison of parameter distributions for σKL for a variety of industries. The red line at σ=1 denotes
the Cobb-Douglas point, and the black line at σ=0 denotes the Leontief or fixed-coefficients point. Some aggregate
sectors have multiple estimates from [3] that are relevant: * Balistreri estimates two agriculture-related sectors: ‘farms’
and ‘agriculture and forestry services’. ** Balistreri estimates many sectors relevant to generic manufacturing; the
estimate for aggregated manufacturing and mining is shown here. *** Balistreri estimates two chemicals related
sectors: ‘rubber and misc. plastic products’ and ‘chemicals and allied products’. **** Balistreri only estimates one
service sector: ‘construction services’, which should probably not be taken to be representative of aggregated services.

B Sensitivity measures
This appendix shows sensitivity plots for many variables in the aggregation hierarchy described in Section 4
and listed in Table 3, roughly ordered from the largest to the smallest scale aggregates.



Figure 10: Forecast sensitivity to elasticity uncertainty for GDP variables in 8 of 16 regions of the model.

Figure 11: Sensitivity to elasticity uncertainty for the revenue of the cement industry in 8 of 16 regions.

Figure 12: Sensitivity to elasticity uncertainty for the revenue of the steel industry in 8 of 16 regions.

Figure 13: Sensitivity to elasticity uncertainty for CO2 emissions from fossil fuel consumption.



Figure 14: Output sensitivity of the industrial demand for electricity in 8 of 16 model regions.

Figure 15: Output sensitivity of the industrial demand for refined petroleum in 8 of 16 model regions.

Figure 16: Output sensitivity of the consumer demand for electricity in 8 of 16 model regions.

Figure 17: Output sensitivity of the consumer demand for refined petroleum in 8 of 16 model regions.


